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Universidad Complutense de Madrid,

Plaza de Ciencias, 3, 28040 Madrid, Spain.
(2) Dept. de Arquitectura y Tecnoloǵıa de Computadores,
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Abstract

In this paper, we are interested in the design of a microfluidic mixer
based on hydrodynamic focusing which is used to initiate the folding
process (i.e., changes of the molecular structure) of a protein by di-
luting a protein solution to decrease its denaturant concentration to a
given value in a short time interval we refer to as mixing time. Our
objective is to optimize this mixer by choosing suitable shape and flow
conditions in order to minimize its mixing time. To this end, we first
introduce a numerical model that enables computation of the mixing
time of a considered mixer. To reduce the computational time needed
to solve our design problem, this model is implemented in both full
three-dimensional (3D) and simplified two-dimensional (2D) versions;
and we analyze the ability of the 2D model to approximate the mixing
time predicted by the 3D model. Then, we define a mixer optimization
problem and solve it using a hybrid global optimization algorithm. We
verify the robustness of the optimized result by performing a sensitiv-
ity analysis of its parameters. We achieve a design with a predicted
mixing time of 0.10 µs, approximately one order of magnitude faster
than previous mixers.
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1 Introduction

Proteins are composed of chains of amino acids which can assume complex
three-dimensional (3D) structures. Protein folding refers to the processes
by which inactive proteins (unfolded chains of amino acids) acquire the 3D
shapes (called folded) enabling them to perform a wide range of biological
functions [1, 2]. The applications of protein folding in research and industry
are numerous, including: drug discovery, DNA sequencing and amplifica-
tion, molecular diagnostics and food engineering (see, for instance, [3, 4]).
Protein folding can be initiated, for instance, by using photochemical initia-
tion [5], changes in temperature and/or pressure [3, 6] or changes in chemical
potential (such as concentration of a chemical species) [7]. All these tech-
niques provide perturbations of a protein conformational equilibrium [1],
necessary to begin folding. The folding techniques based on rapid changes
in concentration of chemical species are among the most versatile [8].

The original concept of a micromixer based on diffusion from (or to) a
hydrodynamically focused stream was first proposed by Brody et al. [9]. As
shown in Figure 1, this kind of mixer is composed of three inlet channels and
a common outlet channel. It is symmetric with respect to its center channel.
In the center inlet channel a mixture of unfolded proteins and a chemical
denaturant is injected, whereas in the two side inlet channels a background
buffer is introduced [10]. The objective is to rapidly decrease the denaturant
concentration in order to initiate protein folding in the outlet channel [10].
Since the publication of Brody et al., there have been significant advances
in this field. As summarized by Hertzog et al. [11, 12] and Yao and Bakajin
[13], these include reduction in consumption rate of reactants, methods of
detection, fabrication and, the most important improvement, reduction of
the so called mixing time (i.e., time needed to reach a required denatruant
concentration threshold). Indeed, the mixing time determines the temporal
resolution by which protein folding kinetics can be analyzed. For example,
while the original mixer of Brody et al. [9] showed mixing times greater than
10 µs (given the mixing measures used here), Hertzog et al. [11] obtained
mixing times of 1.2 µs. Furthermore, Hertzog et al. [11, 12] and Yao and
Bakajin [13] pointed out the importance of 3D flow effects and flow inertia
in the designs of these mixers but, due to computational limitations, they
considered only 2D flow models.

In this article, we present both 2D and 3D modeling for the optimization
of the shape and flow conditions of a particular hydrodynamic focused mi-
crofluidic mixer. Our objective is to improve a specified mixing time of this
device taking into account that, currently, the best mixer designs exhibit
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mixing times of approximately 1.0 µs [11, 13]. To do so, we first introduce a
mathematical model which computes mixing time for a given mixer geome-
try and injection velocities. We develop 2D and 3D versions of this model
in order to study the ability of the 2D model to approximate key results of
the 3D model. Then, we define the considered optimization problem based
on the 2D model. We note that our 2D model is more complex than the one
presented in [11, 14], as it includes new variables such as both the angle of
inlet channels near the intersection and inlet flow velocities. This problem is
solved by considering a hybrid global optimization method which is itself an
improvement of a technique previously used for designing microfluidic mix-
ers [14]. Finally, using the 3D model, we analyze the proposed optimized
mixer to check the validity of the approach to designing based on the 2D
model and also its robustness to parameters perturbations.

The paper is organized as follows: Section 2 introduces the 2D and 3D
models used to compute the mixing times. Section 3 describes the numerical
experiments carried out during this work: a comparison of the models, the
optimization process and sensitivity analysis. Lastly, Section 4 presents our
optimized design results and compare these to published studies [11, 14].

2 Microfluidic mixer modeling

Here, we detail the mathematical models used to perform both optimiza-
tion process and sensitivity analysis. More precisely, in Subsection 2.1, we
define the 2D and 3D models which describe the denaturant concentration
distribution of the mixer. In Subsection 2.2, we introduce the mixer param-
eterization determining its shape and flow conditions. Finally, in Subsection
2.3, we show how mixing time is computed.

Note that the type of model and numerical approach used here to predict
mixing times for given geometry and flow conditions has been validated
experimentally in previous studies, including [11, 12, 13].

2.1 Mathematical Model

We consider the microfluididic hydrodynamic focusing mixer introduced in
Section 1.

Let Ω3D be the domain defined by the mixer shape in 3D. A typical
representation of Ω3D is depicted in Figure 1. The mixer geometry has
two symmetry planes that can be used to reduce the simulation domain.
Therefore, it is only necessary to study a quarter of the mixer, denoted by
Ω3D,s and represented in dark gray in Figure 1. Furthermore, Ω3D,s can
be approximated considering a 2D projection, as suggested in other works
[11, 15, 16]. A representation of this projection, denoted by Ω2D,s, is shown
in Figure 2.
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Figure 1: Typical domain representation of the microfluidic mixer geometry
considering the 3D model: in dark gray we represent the domain Ω3D,s used
for numerical simulations. The geometry’s symmetry planes are highlighted
and labeled.
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Figure 2: Typical representation of the domain Ω2D,s and parameterization
of the microfluidic mixer considered for the optimization process.

For the sake of simplicity, the system of coupled equations introduced
below and describing the distribution of the denaturant concentration in the
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mixer is defined only for the 2D case. The 3D model can be obtained easily
by extruding the domain Ω2D,s, the equations and the boundary conditions
with the considered mixer depth (i.e, mixer length in the Z-axis) [17].

In order to simplify the notations, we introduce Ω = Ω2D,s. In the
boundary of Ω, denoted by Γ, we define: Γc the boundary representing the
center inlet; Γs the boundary representing the side inlet; Γe the boundary
representing the outlet; Γw1 the boundary representing the wall defining the
lower corner; Γw2 the boundary representing the wall defining the upper
corner; Γa the boundary representing the Y-axis symmetry. A geometrical
representation of these boundaries is given in Figure 2.

We assume the mixer liquid flow is incompressible [12]. Thus, the concen-
tration distribution of the denaturant is described by using the incompress-
ible Navier-Stokes equations coupled with the convective diffusion equation
[18]. Since we do not need the behavior of the device during its transient
set up, only steady configurations are considered. More precisely, we ap-
proximate the flow velocity and the denaturant concentration distribution
by considering the solution of the following system of equations [11, 12]:







−∇ · (η(∇u + (∇u)>) − p) + ρ(u · ∇)u = 0 in Ω,
∇ · u = 0 in Ω,
∇ · (−D∇c) + u · ∇c = 0 in Ω,

(1)

where c is the denaturant normalized concentration distribution, u is the
flow velocity vector (m s−1), p is the pressure field (Pa), D is the diffusion
coefficient of the denaturant in the background buffer (m2 s−1), η is the
denaturant dynamic viscosity (kg m−1 s−1) and ρ is the denaturant density
(kg m−3 ).

System (1) is completed by the following boundary conditions:
For the flow velocity u:






















u = 0 on Γw1 ∪ Γw2,
u = −uspara1n on Γs,
u = −ucpara2n on Γc,
p = 0 and (η(∇u + (∇u)>))n = 0 on Γe,
n · u = 0 and t · (η(∇u + (∇u)>) − p)n = 0 on Γa,

(2)

where us and uc are the maximum side and center channel injection veloc-
ities (m s−1), respectively; para1 and para2 are the laminar flow profiles
(parabolas for the 2D case and paraboloids of revolution for the 3D case)
equal to 0 in the inlet border and unity in the inlet center [18]; and (t,n) is
the local orthonormal reference frame along the boundary.

For the concentration c:














n · (−D∇c + cu) = −c0u on Γc,
c = 0 on Γs,
n · (−D∇c) = 0 on Γe,
n · (−D∇c + cu) = 0 on Γw1 ∪ Γw2 ∪ Γa,

(3)

5



where c0 = 1 is the initial denaturant normalized concentration in the cen-
ter inlet. We note that the first equality in (3) corresponds to the inward
denaturant flux in the center inlet channel and the third equality to the
convective flux leaving the outlet channel.

2.2 Mixer parameterization

We first introduce the parameterization used to describe the mixer shape
Γ. We consider several constraints related to the mixer microfabrication
process [12, 19, 20]: (i) the desired structural strength of the device requires
a maximum angle θ at the intersection channels of π/3; (ii) the depth of the
mixer is set to 10 µm to avoid clogging issues, to account for the resolution
limits of confocal microscopy (used to measure experimentally the mixing
time) and to mitigate the effects of the top and bottom walls on mixing
dynamics; (iii) the width of the side and center channel nozzles (i.e., the
length of Γc and twice the length of Γs, respectively) are set to 2 µm and
3 µm, respectively; and (iv) the mixer maximum length (i.e, length in the
X-axis) and the mixer maximum height (i.e, length in the Y-axis) are set to
24 and 30 µm, respectively.

Taking these limitations into account, the mixer shape is described by
rational Bézier curves and two ellipsoids. The latter are denoted as ellipsoids
1 and 2, where part of the ellipsoid 1 joins, in Γw1, the outlet and side chan-
nels, and part of the ellipsoid 2 joins, in Γw2, the center and side channels.
These curves are determined by the following parameters (see Figure 2 for
their geometrical representation), suitably bounded to avoid non-admissible
shapes (i.e., shape with intersected curves): the angle θ ∈ [0, π/3] between
Γc and the direction normal to Γs; the length of the center inlet channel
lc ∈ [2.5 µm, 5 µm]; the length of the side inlet channel ls ∈ [1 µm, 9 µm];
the length of the outlet channel le ∈ [0.1 µm, 20 µm]; the coordinates of the
center of the ellipsoid i, with i = 1, 2, (cxi, cyi) , where cx1 ∈ [0.8 µm, 3
µm], cy1 ∈ [le µm, le + 2 µm], cx2 ∈ [0.8 µm, 0.9 µm] and cy2 ∈ [cy1 + 1
µm, cy1 + 3) µm]; the radius li in the X-axis of the ellipsoid i, with i = 1, 2,
satisfies li ∈ [0 µm, (cxi−0.5) µm]; the radius hi in the Y-axis of the ellipsoid
i, with i = 1, 2, hi, satisfies h1 ∈ [0 µm, (cy2 − cy1 − 1) µm] and h2 ∈ [0
µm, (cy2 − cy1 − 1 − h1) µm].

In addition to those parameters, we also consider the maximum injection
velocities us and uc as design variables. Furthermore, in order to maintain
laminar flow and to avoid secondary flows in the outlet channel, such as
Dean vortices [21, 22], we constrained the typical flow Reynolds Re to less
than 15 [13, 18, 20]. We define Re = ρusL/η, where L = 3 µm is the side
channel nozzle width. This implies that us ≤ ηRe/ρL m s−1. Moreover,
in practice, uc should be at least 10 times lower than us to ensure a good
mixing between fluids [11]. Therefore, we impose that us ∈ [0, ηRe/ρL] m
s−1 and uc = p × us, where p ∈ [0.001, 0.1].

6



Thus, the set of parameters defining a particular mixer design is denoted
by

φ = {us, p, θ, lc, ls, le, cx1, cy1, l1, h1, cx2, cy2, l2, h2} ∈ Φ,

where Φ = Π14
i=1[Φ(i),Φ(i)] ⊂ IR14 is the admissible space; and Φ(i) ∈ IR and

Φ(i) ∈ IR are the upper and lower constraint values of the i-th parameter in
φ described previously, respectively.

2.3 Mixing time

In this work, the mixing time is defined as the time required to change the
denaturant normalized concentration of a typical Lagrangian stream fluid
particle situated in the symmetry streamline at depth z = 0 µm (halfway
between the top and the bottom walls) from α ∈ [0, 1] to ω ∈ [0, 1] [11,
12, 13, 14]. We remark that the choice of α and ω has a great impact on
the mixing time. This choice is influenced by several factors, such as the
type of denaturant [10]. For example, α is set by the minimum denaturant
concentration for which we can be confident the protein stays unfolded,
while ω is set by the maximum concentration for which we can be confident
it folds.

Thus, the mixing time of a particular mixer described by the parameters
φ ∈ Φ, and denoted by J2D for the 2D case and J3D for the 3D case, is
computed by:

JiD(φ) =

∫ c
φ
α

c
φ
ω

dy

uφ(y)
, (4)

where i is the dimension of the problem (i.e., i =2 or 3); uφ and cφ denote
the solution of System (1)-(3), in its iD version, when considering the mixer

defined by φ; and cφ
α and cφ

ω denote, for the 2D case (3D case, respectively),
the points situated along the symmetry streamline (the streamline defined
by the intersection of the two symmetry planes z = 0 µm and x = 0 µm,
respectively) where the denaturant normalized concentration is α and ω.

3 Numerical Experiments

In this Section, we first introduce our numerical implementation of the 2D
and 3D models. Then, we describe the numerical experiments accomplished
to compare both models, to optimize the mixer and to analyze the validity
and robustness of the optimized result.

3.1 Numerical implementation of the model

The numerical versions of both 2D and 3D models, presented in Section
2, are implemented by coupling Matlab scripts (www.mathworks.com) with
COMSOL Multiphysics 3.5a models (www.comsol.com). More precisely, to
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compute a numerical solution of System (1)-(3), we consider a Finite Ele-
ment Method (FEM) with Lagrange P2-P1 elements to stabilize the pressure
and to satisfy the Ladyzhenskaya, Babouska and Brezzi stability condition.
The 2nd-order Lagrange elements model the velocity and concentration com-
ponents, while linear elements represent the pressure. The Navier-Stokes
equations are solved using Galerking Least Square streamline and crosswind
diffusion methods in order to prevent numerical oscillations. The convective
diffusion equation is solved by considering an upwind scheme. We use a
Direct Damped Newton method to solve the corresponding linear systems.
Finally the mixing time, defined by Equation (4), is estimated by consider-
ing the solutions of previous FEM model and a trapezoidal approximation
of the integral. A complete description of those techniques can be found in
[23].

The computational experiments are carried out in a 2.8GHz Intel i7-
930 64-bit computer with 12GB of RAM. For the 2D simulations described
in Sections 3.2 and 3.3, we use a Delaunay mesh with around 6000 ele-
ments. In that case, a single evaluation for J2D requires about 35 s. The
3D simulations, conducted during Sections 3.2 and 3.4, are performed with
a Delaunay mesh containing 13000 elements. Each evaluation of J3D takes
approximatively 30 min.

3.2 Comparison between 2D and 3D models

First, a comprehensive computational study is carried out to determine if
both 2D and 3D models yield similar mixing times when they are evalu-
ated with the same set of parameters. Indeed, if both models have a similar
behavior, the computational effort for solving the optimization problem pre-
sented in Section 3.3 can be reduced by using the 2D model instead of the
3D one (see Section 3.1).

Let {φi}
100
i=1 be a set of 100 mixers randomly generated in Φ by con-

sidering a uniform distribution. For each one of them, we evaluate: the
concentration distribution c2D(φi)(x, y), the velocity field u2D(φi)(x, y) and
the mixing time J2D(φi) for the 2D model; the concentration distribution
c3D(φi)(x, y, 0) and the velocity field u3D(φi)(x, y, 0) in the plane z = 0
µm, and the mixing time J3D(φi) for the 3D model. Then, we compute the
relative difference, in percentage, between the solutions obtained by the 2D
and 3D models as following:

100
|J2D(φi) − J3D(φi)|

J2D(φi)
, (5)

100
∫

Ω
dxdy

∫

Ω

|c2D(φi)(x, y) − c3D(φi)(x, y, 0)|

|c2D(φi)(x, y)|
dxdy, (6)
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100
∫

Ω
dxdy

∫

Ω

‖u2D(φi)(x, y) − u3D(φi)(x, y, 0)‖2

‖u2D(φi)(x, y)‖2

dxdy. (7)

Additionally, for each of those quantities, we calculate the mean, mini-
mum and maximum values regarding the 100 generated mixers.

Finally, we want to know if the 2D model preserve the same order of
mixing time between two particular mixers as the 3D model. To do so,
we sort the previous 100 mixers by their J2D value, and analyze in which
proportion the order is maintained regarding J3D.

3.3 Design problem and considered global optimization al-

gorithm

The objective is to design a microfluidic mixer described by parameters
φ ∈ Φ, where Φ ⊂ IRN and N = 14, that minimizes the mixing time function
J2D defined in Section 2.3. Thus, the associated optimization problem can
be written as:

min
φ∈Φ

J2D(φ). (8)

In order to solve Problem (8), we use the particular MATLAB imple-
mentation of a global optimization algorithm included in the software called
Global Optimization Platform and freely available at

http://www.mat.ucm.es/momat/software.html

This algorithm is a meta-heuristic global optimization method [24, 25,
26] based on a hybridization between a genetic algorithm (GA) [27] (which
approximates the solution of (8)) with a multi-layer secant algorithm (MSA)
[28, 29] (which provides suitable initial populations for the GA). In the
following, both GA and MSA methods are described in more details. A
complete validation of these algorithms on various industrial problems can
be found in [14, 29, 30, 31, 32, 33].

Broadly speaking, GAs are search techniques which try to solve prob-
lems like (8) through a stochastic process based on an analogy with the
Darwinian evolution of species [27]. The GAs have many advantages as
for example: they do not require sensitivity computation, they can solve
complex optimization problems (e.g., with high dimensional search space or
function with various with local minima), and they are intrinsically paral-
lel. However, they also have some important drawbacks, as they exhibit
slower convergence and lower accuracy than other method, such as gradient
algorithms. Next, we describe the GA considered during this work:

• Step 1- Inputs: User must define four parameters: Np ∈ IN, Ng ∈ IN,
pm ∈ [0, 1] and pc ∈ [0, 1]. The meaning of those parameters is clarified
later in the following steps. In addition, a first set, called ’initial
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population’ and denoted by X0 = {x0
j ∈ Φ, j = 1, ..., Np}, of Np points

(called ’individuals’) in Φ is also provided by user.

• Step 2- Generating new populations: Starting from X0, we recur-
sively create Ng new populations by applying four stochastic processes:
’selection’, ’crossover’, ’mutation’ and ’elitism’, which are described in
Steps 3.1, 3.2, 3.3 and 3.4, respectively.

More precisely, let Xi = {xi
j ∈ Φ, j = 1, ..., Np}, with i = 1, ..., Ng − 1,

denotes the population at iteration i. Then, using the (Np, N)-real
valued matrix:

Xi =







xi
1

...
xi

Np






=







xi
1(1) . . . xi

1(N)
...

. . .
...

xi
Np

(1) . . . xi
Np

(N)






,

with xi
j = (xi

j(1), ..., x
i
j(N)) ∈ Φ, Xi+1 is obtained by considering:

Xi+1 = (IN − E i)(CiSiXi + Mi) + E iXi,

where matrices Si, Ci, Mi, E i and IN are described as follows.

– Step 2.1- Selection: We randomly select Np individuals from
Xi with eventual repetitions. Each individual xi

j ∈ Xi, with j =
1, ..., Np, has a probability to be selected during this process which

is given by J−1
2D (xi

j)/
∑Np

k=1
J−1

2D (xi
k). This step can be summarized

as
Xi+1,1 = SiXi,

where Si is a (Np, Np)-matrix with Si
j,k = 1 if the k-th individual

of Xi is the j-th selected individual and Si
j,k = 0 otherwise.

– Step 2.2- Crossover: For each pair of consecutive individuals
(rows) 2j − 1 and 2j in Xi+1,1, with 1 ≤ j ≤ floor(Np/2) (where
floor(X) is the nearest integer lower or equal than X), we deter-
mine, with a probability pc, if those rows exchange data or if they
are directly copied into an intermediate population denoted by
Xi+1,2. Mathematically, this step can be written as:

Xi+1,2 = CiXi+1,1,

where Ci is a real-valued (Np, Np)-matrix. The coefficients of the
(2j − 1)-th and 2j-th rows of Ci, with 1 ≤ j ≤ floor(Np/2), are
given by:

Ci
2j−1,2j−1 = λ1, Ci

2j−1,2j = 1−λ1, Ci
2j,2j = λ2, Ci

2j,2j−1 = 1−λ2

where λ1 = λ2 = 1, with a probability 1 − pc, or λ1 and λ2 are
randomly chosen in ]0, 1[, considering a uniform distribution, in
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other case. Other coefficients of Ci are set to 0. If Np is odd
then we also set Ci

Np,Np
= 1 and then the Np-th row of Xi+1,1 is

directly copied in Xi+1,2.

– Step 2.3- Mutation: We decide, with a probability pm, if each
row of Xi+1,2 is randomly perturbed or not. This step is defined
by:

Xi+1,3 = Xi+1,2 + Mi,

where Mi is a real-valued (Np, N)-matrix where the j-th row,
j = 1, ..., Np, is equal to 0, with a probability 1-pm, or a random
vector mj ∈ IRN , generated considering a uniform distribution in

the subset of IRN such that xi+1,2
j + mj ∈ Φ, otherwise.

– Step 2.4- Elitism: Let xi
b, where b ∈ 1, ..., Np, be the individual

in Xi with the lowest value of J2D (or, if there exists various, one
of those individuals selected randomly). If xi

b has a lower J2D

value than all the individuals in Xi+1,3, it is directly copied at
the b-th row of Xi+1. This step can be formalized as:

Xi+1 = (IN − E i)(Xi+1,3) + E iXi,

where IN is the identity matrix of size N and E i is a real-valued
(Np, Np)-matrix such that E i(b, b) = 1 if xi

b has a lower J2D value
than all the individuals in Xi+1,3 and 0 otherwise, E i = 0 else-
where.

• Step 3- Output: After Ng iterations, the GA stops and returns an
output solution denoted by

GAO(X0, Np, Ng, pm, pc) = argmin{J2D(xi
j)/

xi
j is the j-th row of Xi, i = 1, ..., Ng , j = 1, ..., Np).

In order to improve the precision and the computational time of the GA
previously described, we consider the MSA described next:

• Step 1- Inputs: The user define the following parameters: lmax ∈
IN, Np ∈ IN, Ng ∈ IN, pm ∈ [0, 1] and pc ∈ [0, 1].

• Step 2- Initial population: X0
1 = {x0

1,j ∈ Φ, j = 1, ..., Np} is ran-
domly generated, considering a uniform distribution.

• Step 3- Main loop: For l from 1 to lmax:

– Step 3.1- We compute ol = GAO(X0
l , Np, Ng, pm, pc).
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– Step 3.2- We build X0
l+1

= {x0
l+1,j ∈ Φ, j = 1, ..., Np} as follow-

ing:

∀j ∈ {1, ..., Np}, if J2D(ol) = J2D(x0
l,j) we set

x0
l+1,j = x0

l,j,

else we set

x0
l+1,j = projΦ(x0

l,j − J2D(ol)
ol − x0

l,j

J2D(ol) − J2D(x0
l,j

)
),

where projΦ : IRN → Φ is the projection function such that
projΦ(x)(i) =min(max( x(i),Φ(i)),Φ(i)), with i = 1, ..., N .

• Step 4- Output: The algorithm returns the following output:

MSAO(lmax, Np, Ng, pm, pc) = argmin{J2D(ol)/l = 1, ..., lmax}.

The numerical experiments presented in [30, 33] suggest that consider-
ing the previous MSA instead of GA alone reduces the computational time
needed to solve optimization problems.

We denote by

φo = MSAO(lmax, Np, Ng, pm, pc)

the result obtained at then end of the optimization process.

3.4 Analysis of the optimized result

Firstly, we want to check the improvements obtained by our optimized mixer.
Additionally, we want to study the behavior of φo when considering the 3D
model. Indeed, some important effects cannot be appreciated with the 2D
model, as for example, the impact of upper and lower mixer walls on the
velocity field or possible effects of certain secondary flows. To this aim, we
analyze the mixing time, the shape, the final concentration and the velocity
field of φo by considering both 2D and 3D models and compare them to
other results found in literature [11, 13, 14].

Secondly, we want to perform a simple sensitivity analysis on φo. This
study consists on randomly perturb all the parameters of φo by taking uni-
form variations in a range of [−α%,+α%] of their value. This perturbation
process is repeated 100 times. For each perturbed mixer, denoted by φp,α

with p = 1, ..., 100, we compute J3D(φp,α) and compare it to J3D(φo) through
the relation:

100
|J3D(φo) − J3D(φp,α)|

J3D(φo)
. (9)
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Then, we compute the mean, minimum and maximum values of the Equa-
tion (9) regarding the 100 perturbed mixers. The objective of the sensitivity
analysis is twofold. On the one hand, we want to know if φo is close to a
local minimum of the design problem when considering the 3D model. To
this aim, we apply small perturbations of amplitude α = 1% and focus on
the mixers with lower mixing time than φo. On the other hand, we want to
analyze the robustness of φo (i.e., the variations on its mixing time) when
the parameters are strongly perturbed. For this case, perturbations of am-
plitude α = 5%, 10% and 20% are taking into account [11].

4 Numerical Results

Here, we present the results obtained by performing the experiments de-
scribed in Section 3 when considering the denaturant introduced in Section
4.1. In particular, Section 4.2 studies the comparison between the 2D and
3D models, and Section 4.3 analyzes the behavior of the optimized mixer.

4.1 Considered denaturant

During this work, we have considered guanidine hydrochloride (GdCl) as
the denaturant [10]. Indeed, GdCl is a Chaotropic agent which is frequently
used for protein folding.

The thermophysical variables of GdCl can be approximated as those
of water. More precisely, its density is ρ = 1010 kg m−3 and its dynamic
viscosity is η = 9.8×10−4 kg m−1 s−1. Furthermore, the diffusion coefficient
of GdCl in the background buffer (assumed to be similar to water) is D =
2 × 10−9 m2 s−1. According to those coefficients and the restriction Re =
ρvL/η ≤ 15 introduced in Section 2.2, the maximum side injection velocity
is us ≤ 7 m s−1.

Finally, the values of α and ω in Equation (4) adapted to GdCl are
considered here as 0.9 and 0.3, respectively [11, 14].

4.2 Comparison between the 2D and 3D models

In Table 1, we report the mean, minimum and maximum relative percent
variation values between the solutions of Equations (5)-(7) obtained by the
2D and 3D models. The mean percent variation in the mixing time is 15.3%,
showing that the 2D model approximates, in a reasonable way, the mixing
time predicted by the 3D model. As can be seen, the largest percent vari-
ations are obtained in the velocity field, with a mean percent variation of
18.7% versus only 9.8% for the concentration distributions. From these
results, we may conclude that the ability of the 2D model to match the
solutions (e.g., mixing time or concentrations) of the 3D model is sufficient.
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Table 1: Mean, minimum and maximum percent variation (%) of the mixing
time, concentration distribution in the plane z = 0 µm and velocity field in
the plane z = 0 µm obtained when considering the 100 microfluidic mixers
randomly generated during the 2D-3D comparison experiments detailed in
Section 3.2.

Mean Minimum Maximum

Mixing time 15.3 1.2 56.7
Concentration 9.8 0.2 18.7
Velocity field 18.7 3.4 32.9

An important feature of the 2D model is its ability to preserve the same
order of mixing time between two different mixer designs as the 3D model
(i.e., if J2D(φ1) ≤ J2D(φ2) then J3D(φ1) ≤ J3D(φ2), for most of φ1 and
φ2 ∈ Φ). For this purpose, we represent in Figure 3 the 2D mixing time
of the 100 mixers generated previously, sorted according to their 2D mixing
time, as well as their respective 3D mixing times. The 3D mixing time order
is preserved in 72% of the cases. In addition, when the order between two
consecutive mixers is not conserved, the difference in their mixing times is,
on average, about 12% which can be considered as a low value.

All these results suggest that the optimization process can be performed
by using the 2D model instead of the 3D one.

4.3 Analysis of the optimized mixer

The optimization problem (8) has been solved by considering the 2D model
and the MSA method presented in Section 3.3 with (lmax, Ng, Np, pm, pc) =
(20, 20, 20, 0.5, 0.55). This set of MSA parameters has given good results (in
terms of computational time and precision) on other complex optimization
problems [30, 31, 33]. The convergence history of the MSA is depicted
in Figure 4. The number of evaluations of J2D used by MSA was about
6000 and the optimization process spent around 60 h. Notice that, as a
single evaluation of J3D takes approximatively 30 min, solving the same
optimization problem with the 3D model could require more than 125 days,
which is not a reasonable time.

The values of φo are reported on Table 2. The shape of the optimized
microfluidic mixer, its concentration distribution and the concentration evo-
lution of a particle in its central streamline, obtained with the 2D model,
are depicted in Figure 5. The maximum side injection velocity is us =5.2
m s−1, whereas the maximum central injection velocity is uc =0.038 m s−1.
The Reynolds number Re, defined in Section 2.2, is around 9. The mixing
time associated to this mixer is about 0.10 µs. This value is 10 times lower
than the mixing times achieved by previous mixer designs with the same 2D
model [11, 12, 14]. In those works, the mixing times were each greater than
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Figure 3: Mixing times of the 100 microfluidic mixers (called Scenarios),
randomly generated during the 2D versus 3D comparison process and sorted
considering the 2D mixing time, as computed when considering a) the 2D
model and b) the 3D model.
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Figure 4: Convergence history of the MSA obtained during the optimization
process.
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Table 2: Values of the optimized microfluidic mixer parameters presented
in Section 4.3.

Parameter us p θ lc ls le cx1

Value 5.2 7.3×10−3 0.6 2.5 9.1 16.3 1.1

Parameter cy1 l1 h1 cx2 cy2 l2 h2

Value 16.6 0.5 0.3 0.9 18.9 0.1 1.1

Figure 5: Optimized mixer simulated with the 2D model: a) shape of the
optimized mixer with a superposed color plot of the denaturant concentra-
tion distribution and b) the time evolution of the denaturant concentration
of a particle in the symmetry streamline.

1 µ. We attribute this improvement mainly to three factors: (i) the angle
θ of the inlet side channels, whose value is about π/5 radians (this angle
was fixed to 0 in [11, 12, 14]); (ii) the width of the mixing region (i.e., the
area, defined by (x, y) ∈ [0, 2] × [14, 19]µm and depicted in Figure 6, where
both fluids are mainly mixed) which reaches a minimum value of about 1.1
µm; and (iii) the choice of adequate injection velocities. Indeed, as can be
observed in Figure 6, the shape of both corners Γw1 (stretched along the
Y-direction) and Γw2 (sharply pointed wedge pointing roughly along the Y-
axis) yields a reduced channel width of 1.1 µm near y = 16.5 µm, where the
maximum velocity rises up to 26 m s−1, which helps to accelerate the mixing
time. Moreover, we note that the optimized value of θ is consistent with the
experimental work described in [13]. Such a study highlights the importance
of inclined side channels to prevent strong centripetal accelerations in the
inlet side channel streams, which deteriorate the mixer performances.
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Figure 6: Comparison of the solutions obtained in the mixing region with the
optimized mixer considering the 3D model (subfigures a) and c)) and the
2D model (subfigures b) and d)). a) and b) show denaturant concentration
distributions while c) and d) plot velocity amplitude distributions in the
symmetric plane z = 0 µm. For the 3D case, the figure also shows, in
the inset detail views, the X-Z plane slices of the concentration and velocity
amplitude distributions at the plane defined by y=16.5µm (represented with
a horizontal black lines).
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Table 3: Mean, minimum and maximum percent variation (%) in the mixing
time obtained by considering the 3D model and by perturbing randomly all
the parameters of φo with a maximum amplitude of 1%, 5%, 10% and 20%
of their initial value.

Maximum Amplitude Mean Minimum Maximum

1% 1.2 0.1 2.1
5% 6.1 0.6 12.7
10% 13.7 2.5 29.2
20% 21.7 4.4 45.7

We also compute the mixing time for this optimum design using the 3D
model. To this aim, we extrude the 2D optimal shape (see Figure 7) and we
evaluate it using the 3D model. The predicted mixing time is also around
0.10 µs (the difference in mixing times with the 2D model is lower than
about 4%). In Figure 6, we show the concentration and velocity amplitude
distributions achieved by the 2D and 3D models in the z = 0 µm midplane
and considering the mixing region. Both solutions exhibit similar character-
istics, although we can observe some differences, especially in the velocity
field; for the 3D case: (i) Re is around 7 (instead of 9 in te 2D case); and
(ii) the maximum velocity reached near y = 16.5 µm is 19 m s−1 (instead of
26 m s−1 in te 2D case). Figure 7-a) shows selected streamlines generated
by the 3D velocity field. As we can observe on this figure, the fluid remains
laminar. The concentration distribution as well as the velocity amplitude
distribution, both obtained with the 3D model, are shown in Figure 7-b)
and -c), respectively. These two figures exhibit the so-called wall effect [34],
since the no-slip condition at the mixer walls results in low velocity val-
ues near those walls. This can also be observed in Figure 6, where the X-Z
slices of the concentration and velocity amplitude distributions are depicted.
These low velocities result in higher denaturant concentrations in these re-
gions. However, the mixer is designed to be relatively insensitive to such
wall effects by maintaining a relatively large depth of 10 µm (while having
a minimum channel width of 1.1 µm in the mixing region).

The results of the sensitivity analysis of the optimized parameters pre-
sented in Section 3.4 when α = 1%, 5%, 10% and 20% are reported on Table
3.

We first focus on the case where the amplitude of the perturbations
applied to φo are lower than 1%. We observe that the optimized mixer
has a better mixing time in 77% of the cases. We attribute the imperfect
prediction of the 3D optimum to, on the one hand, the lack of precision of
the considered MSA method (due to the high computational time required
to evaluate Equation (4), the number of iteration of the algorithm, and thus
its precision, has been restricted) and, on the other hand, the differences
between the 2D and 3D models. However, it is important to mention that
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Figure 7: Sample results from the optimized mixer design as simulated with
the 3D model. Shown are isometric views of the shape of the optimized
mixer with representation of a) selected streamlines generated by consider-
ing the velocity field, b) the concentration distribution, and c) the velocity
amplitude distribution.
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the mean mixing time variation between the optimized mixer and the mixers
with the lowest mixing times, is smaller than 0.4%. This result suggests that
the optimized mixer may be considered a solution close to a local minimum
of Problem (8) when the 3D model is used.

Furthermore, as can be seen on Table 3-Column Mean, the mean percent
variation in the mixing time (caused by variations in the input parameters)
is proportional to the maximum percent variation of the parameter per-
turbation. In particular, the mixing times of the perturbed mixers are of
the same order than the mixing time of the optimized mixer, suggesting
the optimized solution is stable. Additionally, even in the worst case (i.e.,
Table 3-Line 20%-Column Maximum ), the perturbed mixer still exibits a
mixing time of 0.15 µs, which is a significant improvement compared to pre-
vious mixers proposed in literature [11, 12]. All those results indicate that
φo is a robust solution for our design problem.

5 Conclusions

We have been explored the design of a particular fast hydrodynamic focusing
microfluidic mixer for protein folding. The objective was to reduce the
mixing time of this kind of mixer by optimizing the shape (in particular the
angle of the side channels) and the injection velocities.

To this aim, firstly, we have introduced a mathematical model used to
compute the mixing time of a mixer according to the defined design variables.
This model has been presented in 2D and 3D versions. Results show that
the 2D and 3D models exhibit similar behaviors regarding the mixing time.
Thus, we concluded that the 2D model can be used in the optimization
process to greatly reduce the computational time.

Secondly, we defined the optimization problem associated to the design
of our device, and solved this using a MSA. The optimized mixer shows a
mixing time of 0.1 µs, which represented a decrease of a factor 10 compared
to previous known mixers.

Finally, we have verified the robustness of the optimized mixer perfor-
mances when perturbing its optimization parameters.

The next step, which is currently in preparation (Ivorra B, Redondo J,
Santiago JG, Ramos AM, Ortigosa PM. 3d modeling for the sensitivity anal-
ysis of an optimized fast hydrodynamic focusing microfluidic mixer for pro-
tein folding.), is to perform a deeper sensitivity analysis, regarding the op-
timization parameters and other fixed variables (such as the mixer depth),
in order to provide better recommendations and guidelines for the device
fabrication process.
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